Vector Spaces and Subspaces

Commutativity of addition

Associativity of addition

Multiplicative identity

Addition identity

X. Du

- What exactly is a vector?
- Common vector spaces: real numbers, complex numbers, *n*th-degree polynomials, R^n
- Axioms of vector spaces
 - $\circ \quad \vec{u}, \vec{v} \in V \Longrightarrow \vec{u} + \vec{v} \in V$
 - $\circ \quad \vec{u} + \vec{v} = \vec{v} + \vec{u}$
 - $\circ \quad \vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
 - $\circ \quad \exists \vec{0} \in V : \forall \vec{v} \in V, \vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$
 - $\circ \quad \forall \vec{v} \in V, \exists -\vec{v} \in V : \vec{v} + (-\vec{v}) = (-\vec{v}) + \vec{v} = \vec{0}$ Additive inverse
 - $\circ \quad \vec{v} \in V \Longrightarrow k\vec{v} \in V$
 - $\circ 1\vec{v} = \vec{v}$
 - $\circ a(b\vec{v}) = (ab)\vec{v}$
 - $\circ \quad k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$
 - Distributivity of vector addition \circ $(a+b)\vec{v} = a\vec{v} + b\vec{v}$
 - Distributibity of scalar addition
- Subspaces are subsets of vector spaces that are also vector spaces
- Axioms of subspaces (W is a subspace of V)
 - $\circ \quad \vec{0} \in W$
 - $\circ \quad \vec{u}, \vec{v} \in W \Longrightarrow \vec{u} + \vec{v} \in W$
 - $\circ \quad \vec{v} \in W \Longrightarrow k\vec{v} \in W$
- A set of vectors $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ spans V iff any vector in V can be expressed as a linear combinations of vectors in S, i.e. $\forall \vec{v} \in V, \exists c_1, c_2, \dots, c_n : \vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$
 - S is also called a **spanning set**.
 - \circ span(S) is the set of all vectors spanned by S.
- **Row space**: the vector space spanned by the rows of a matrix
 - Subspace of R^n (given $m \times n$ matrix)
- Column space: the vector space spanned by the columns of a matrix
 - Subspace of R^m (given $m \times n$ matrix)
 - A system of linear equations $A\vec{x} = \vec{b}$ iff \vec{b} is in the column space of A.
- **Null space**: the space of all \vec{x} such that $A\vec{x} = \vec{0}$
 - Subspace of R^n (given $m \times n$ matrix)
- Given a matrix in row-echelon form, the rows with pivot entries form a basis for the row space, and the columns with the pivot entries form a basis for the column space.
- **Rank**: rank(A)
 - Number of pivots of A in row-echelon form
 - Dimension of row space and column space
- **Nullity**: null(*A*)
 - Number of non-pivot columns of A in row-echelon form
 - Dimension of the null space
- Rank-Nullity Theorem
 - \circ rank(A) + null(A) = n, where n is the number of columns of A
 - For linear transformations: $\dim(\operatorname{range}(T)) + \dim(\ker(T)) = \dim(V)$